Self-organized models of selectivity in calcium channels.
نویسندگان
چکیده
The role of flexibility in the selectivity of calcium channels is studied using a simple model with two parameters that accounts for the selectivity of calcium (and sodium) channels in many ionic solutions of different compositions and concentrations using two parameters with unchanging values. We compare the distribution of side chains (oxygens) and cations (Na(+) and Ca(2+)) and integrated quantities. We compare the occupancies of cations Ca(2+)/Na(+) and linearized conductance of Na(+). The distributions show a strong dependence on the locations of fixed side chains and the flexibility of the side chains. Holding the side chains fixed at certain predetermined locations in the selectivity filter distorts the distribution of Ca(2+) and Na(+) in the selectivity filter. However, integrated quantities-occupancy and normalized conductance-are much less sensitive. Our results show that some flexibility of side chains is necessary to avoid obstruction of the ionic pathway by oxygen ions in 'unfortunate' fixed positions. When oxygen ions are mobile, they adjust 'automatically' and move 'out of the way', so they can accommodate the permeable cations in the selectivity filter. Structure is the computed consequence of the forces in this model. The structures are self-organized, at their free energy minimum. The relationship of ions and side chains varies with an ionic solution. Monte Carlo simulations are particularly well suited to compute induced-fit, self-organized structures because the simulations yield an ensemble of structures near their free energy minimum. The exact location and mobility of oxygen ions has little effect on the selectivity behavior of calcium channels. Seemingly, nature has chosen a robust mechanism to control selectivity in calcium channels: the first-order determinant of selectivity is the density of charge in the selectivity filter. The density is determined by filter volume along with the charge and excluded volume of structural ions confined within it. Flexibility seems a second-order determinant. These results justify our original assumption that the important factor in Ca(2+) versus Na(+) selectivity is the density of oxygen ions in the selectivity filter along with (charge) polarization (i.e. dielectric properties). The assumption of maximum mobility of oxygens seems to be an excellent approximate working hypothesis in the absence of exact structural information. These conclusions, of course, apply to what we study here. Flexibility and fine structural details may have an important role in other properties of calcium channels that are not studied in this paper. They surely have important roles in other channels, enzymes, and proteins.
منابع مشابه
Self-organized Models of Selectivity in Ca and Na Channels
My collaborators and I [2] study selectivity in ion channels. Ion channels are proteins with a hole down their middle that are the (nano nearly pico)valves of life. Ion channels control an enormous range of biological function in health and disease. A large amount of data is available about selectivity in many channels. Selectivity in ion channels occurs without structural change of the channel...
متن کاملMulti-ion conduction bands in a simple model of calcium ion channels.
We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. With increasing Qf, there are distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of almost zer...
متن کاملEnergetics of discrete selectivity bands and mutation-induced transitions in the calcium-sodium ion channels family.
We use Brownian dynamics (BD) simulations to study the ionic conduction and valence selectivity of a generic electrostatic model of a biological ion channel as functions of the fixed charge Q(f) at its selectivity filter. We are thus able to reconcile the discrete calcium conduction bands recently revealed in our BD simulations, M0 (Q(f)=1e), M1 (3e), M2 (5e), with a set of sodium conduction ba...
متن کاملSynthesis and Vasorelaxant Effect of 9-aryl-1,8-acridinediones as Potassium Channel Openers in Isolated Rat Aorta
ATP-sensitive potassium (KATP) channel openers have a relaxation effect due to the lower cellular membrane potential and inhibit calcium influx. There has been considerable interest in exploring KATP channel openers in the treatment of various diseases such as cardiovascular, cerebrovascular, and urinary system disease and premature labor. The purpose of this study was to synthesize 3,3,6,6-tet...
متن کاملThe role of BK channels in antiseizure action of the CB1 receptor agonist ACEA in maximal electroshock and pentylenetetrazole models of seizure in mice
The anticonvulsant effect of cannabinoid compound has been shown in various models of seizure. On the other hand, there are controversial findings about the role of large conductance calcium-activated potassium (BK) channels in the pathogenesis of epilepsy. In this study, the effect of arachidonyl-2′-chloroethylamide (ACEA), a CB1 receptor agonist, and a BK channel antagonist, paxilline, either...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical biology
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2011